中国 · 南京 · 栖霞区紫东路2号紫东国际创意园B3-2幢5F
+86-18994094214 (仅工作日:8:30~17:30)
contact@oakchina.cn

OAK相机如何将 YOLO NAS 模型转换成blob格式?

OAK相机如何将 YOLO NAS 模型转换成blob格式?

1.其他Yolo转换及使用教程请参考

.pt 转换为 .onnx

使用下列脚本将 YOLO NAS 模型转换为 onnx 模型,若已安装 openvino_dev,则可进一步转换为 OpenVINO 模型:

安装依赖:

pip install super_gradients

示例用法:

python export_yolo_nas.py -m yolo_nas_s -imgsz 640 
usage: export_yolo_nas.py [-h] [-m {yolo_nas_s,yolo_nas_m,yolo_nas_l}] [-imgsz IMG_SIZE [IMG_SIZE ...]]
                         [-op OPSET] [-n NAME] [-o OUTPUT_DIR] [-b] [-s] [-sh SHAVES]
                         [-t {docker,blobconverter,local}]

Tool for converting YOLO NAS models to the blob format used by OAK

optional arguments:
  -h, --help            show this help message and exit
  -m {yolo_nas_s,yolo_nas_m,yolo_nas_l}, -i {yolo_nas_s,yolo_nas_m,yolo_nas_l}, -w {yolo_nas_s,yolo_nas_m,yolo_nas_l}, --input_model {yolo_nas_s,yolo_nas_m,yolo_nas_l}
                        model name (default: yolo_nas_s)
  -imgsz IMG_SIZE [IMG_SIZE ...], --img-size IMG_SIZE [IMG_SIZE ...]
                        image size (default: [640, 640])
  -op OPSET, --opset OPSET
                        opset version (default: 12)
  -n NAME, --name NAME  The name of the model to be saved, none means using the same name as the input
                        model (default: None)
  -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                        Directory for saving files, none means using the same path as the input model
                        (default: None)
  -b, --blob            OAK Blob export (default: False)
  -s, --spatial_detection
                        Inference with depth information (default: False)
  -sh SHAVES, --shaves SHAVES
                        Inference with depth information (default: None)
  -t {docker,blobconverter,local}, --convert_tool {docker,blobconverter,local}
                        Which tool is used to convert, docker: should already have docker
                        (https://docs.docker.com/get-docker/) and docker-py (pip install docker)
                        installed; blobconverter: uses an online server to convert the model and should
                        already have blobconverter (pip install blobconverter); local: use openvino-dev
                        (pip install openvino-dev) and openvino 2022.1 (
                        https://docs.oakchina.cn/en/latest
                        /pages/Advanced/Neural_networks/local_convert_openvino.html#id2) to convert
                        (default: blobconverter)

export_yolo_nas.py :

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import argparse
import json
import time
import warnings
from io import BytesIO
from pathlib import Path

import torch
import torch.nn as nn

warnings.filterwarnings("ignore")

ROOT = Path(__file__).resolve().parent

yolo_nas = [
    "yolo_nas_s",
    "yolo_nas_m",
    "yolo_nas_l",
]


class DetectNAS(nn.Module):
    """YOLO-NAS Detect head for detection models"""

    def __init__(self, old_detect):
        super().__init__()
        self.num_classes = old_detect.num_classes  # number of classes
        self.reg_max = old_detect.reg_max
        self.num_heads = old_detect.num_heads
        self.proj_conv = old_detect.proj_conv

        for i in range(self.num_heads):
            setattr(self, f"head{i + 1}", getattr(old_detect, f"head{i + 1}"))

    def forward(self, feats):
        output = []
        for i, feat in enumerate(feats):
            b, _, h, w = feat.shape
            height_mul_width = h * w
            reg_distri, cls_logit = getattr(self, f"head{i + 1}")(feat)

            reg_dist_reduced = torch.permute(reg_distri.reshape([-1, 4, self.reg_max + 1, height_mul_width]), [0, 2, 3, 1])
            reg_dist_reduced = nn.functional.conv2d(nn.functional.softmax(reg_dist_reduced, dim=1), weight=self.proj_conv).squeeze(1)

            # cls and reg
            pred_scores = cls_logit.sigmoid()
            pred_conf, _ = pred_scores.max(1, keepdim=True)
            pred_bboxes = torch.permute(reg_dist_reduced, [0, 2, 1])
            output.append(torch.cat([pred_bboxes.reshape([-1, 4, h, w]), pred_conf, pred_scores], dim=1))
        return output


def parse_args():
    parser = argparse.ArgumentParser(
        description="Tool for converting Yolov8 models to the blob format used by OAK",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    parser.add_argument(
        "-m",
        "-i",
        "-w",
        "--input_model",
        type=str,
        help="model name ",
        default="yolo_nas_s",
        choices=yolo_nas,
    )
    parser.add_argument(
        "-imgsz",
        "--img-size",
        nargs="+",
        type=int,
        default=[640, 640],
        help="image size",
    )  # height, width
    parser.add_argument("-op", "--opset", type=int, default=12, help="opset version")

    parser.add_argument(
        "-n",
        "--name",
        type=str,
        help="The name of the model to be saved, none means using the same name as the input model",
    )
    parser.add_argument(
        "-o",
        "--output_dir",
        type=Path,
        help="Directory for saving files, none means using the same path as the input model",
    )
    parser.add_argument(
        "-b",
        "--blob",
        action="store_true",
        help="OAK Blob export",
    )
    parser.add_argument(
        "-s",
        "--spatial_detection",
        action="store_true",
        help="Inference with depth information",
    )
    parser.add_argument(
        "-sh",
        "--shaves",
        type=int,
        help="Inference with depth information",
    )
    parser.add_argument(
        "-t",
        "--convert_tool",
        type=str,
        help="Which tool is used to convert, docker: should already have docker (https://docs.docker.com/get-docker/) and docker-py (pip install docker) installed; blobconverter: uses an online server to convert the model and should already have blobconverter (pip install blobconverter); local: use openvino-dev (pip install openvino-dev) and openvino 2022.1 ( https://docs.oakchina.cn/en/latest /pages/Advanced/Neural_networks/local_convert_openvino.html#id2) to convert",
        default="blobconverter",
        choices=["docker", "blobconverter", "local"],
    )

    parse_arg = parser.parse_args()

    if parse_arg.name is None:
        parse_arg.name = parse_arg.input_model

    if parse_arg.output_dir is None:
        parse_arg.output_dir = ROOT.joinpath(parse_arg.input_model)

    parse_arg.output_dir = parse_arg.output_dir.resolve().absolute()

    parse_arg.output_dir.mkdir(parents=True, exist_ok=True)

    parse_arg.img_size *= 2 if len(parse_arg.img_size) == 1 else 1  # expand

    if parse_arg.shaves is None:
        parse_arg.shaves = 5 if parse_arg.spatial_detection else 6

    return parse_arg


def export(input_model, img_size, output_model, opset, **kwargs):
    t = time.time()
    from super_gradients.training import models

    # Load PyTorch model
    model = models.get("yolo_nas_s", pretrained_weights="coco")

    labels = model._class_names  # get class names
    labels = labels if isinstance(labels, list) else list(labels.values())

    # check num classes and labels
    assert model.num_classes == len(labels), f"Model class count {model.num_classes} != len(names) {len(labels)}"

    # Replace with the custom Detection Head

    model.heads = DetectNAS(model.heads)

    num_branches = model.heads.num_heads

    # Input
    img = torch.zeros(1, 3, *img_size)

    model.eval()
    model.prep_model_for_conversion(input_size=[1, 3, *img_size])

    y = model(img)  # dry runs

    # ONNX export
    try:
        import onnx

        print()
        print("Starting ONNX export with onnx %s..." % onnx.__version__)
        output_list = ["output%s_yolov6r2" % (i + 1) for i in range(num_branches)]
        with BytesIO() as f:
            torch.onnx.export(
                model,
                img,
                f,
                verbose=False,
                opset_version=opset,
                input_names=["images"],
                output_names=output_list,
            )

            # Checks
            onnx_model = onnx.load_from_string(f.getvalue())  # load onnx model
            onnx.checker.check_model(onnx_model)  # check onnx model

        try:
            import onnxsim

            print("Starting to simplify ONNX...")
            onnx_model, check = onnxsim.simplify(onnx_model)
            assert check, "assert check failed"

        except ImportError:
            print(
                "onnxsim is not found, if you want to simplify the onnx, "
                + "you should install it:\n\t"
                + "pip install -U onnxsim onnxruntime\n"
                + "then use:\n\t"
                + f'python -m onnxsim "{output_model}" "{output_model}"'
            )
        except Exception:
            print("Simplifier failure")

        onnx.save(onnx_model, output_model)
        print("ONNX export success, saved as:\n\t%s" % output_model)

    except Exception:
        print("ONNX export failure")

    # generate anchors and sides
    anchors = []

    # generate masks
    masks = dict()

    print("anchors:\n\t%s" % anchors)
    print("anchor_masks:\n\t%s" % masks)
    export_json = output_model.with_suffix(".json")
    export_json.write_text(
        json.dumps(
            {
                "nn_config": {
                    "output_format": "detection",
                    "NN_family": "YOLO",
                    "input_size": f"{img_size[0]}x{img_size[1]}",
                    "NN_specific_metadata": {
                        "classes": model.num_classes,
                        "coordinates": 4,
                        "anchors": anchors,
                        "anchor_masks": masks,
                        "iou_threshold": 0.3,
                        "confidence_threshold": 0.5,
                    },
                },
                "mappings": {"labels": labels},
            },
            indent=4,
        )
    )
    print("Anchors data export success, saved as:\n\t%s" % export_json)

    # Finish
    print("Export complete (%.2fs).\n" % (time.time() - t))


def convert(convert_tool, output_model, shaves, output_dir, name, **kwargs):
    t = time.time()

    export_dir: Path = output_dir.joinpath(name + "_openvino")
    export_dir.mkdir(parents=True, exist_ok=True)

    export_xml = export_dir.joinpath(name + ".xml")
    export_blob = export_dir.joinpath(name + ".blob")

    if convert_tool == "blobconverter":
        from zipfile import ZIP_LZMA, ZipFile

        import blobconverter

        blob_path = blobconverter.from_onnx(
            model=str(output_model),
            data_type="FP16",
            shaves=shaves,
            use_cache=False,
            version="2022.1",
            output_dir=export_dir,
            optimizer_params=[
                "--scale=255",
                "--reverse_input_channel",
                "--use_new_frontend",
            ],
            download_ir=True,
        )

        with ZipFile(blob_path, "r", ZIP_LZMA) as zip_obj:
            for name in zip_obj.namelist():
                zip_obj.extract(
                    name,
                    output_dir,
                )
        blob_path.unlink()
    elif convert_tool == "docker":
        import docker

        export_dir_in_docker = Path("/io").joinpath(export_dir.name)
        export_xml_in_docker = export_dir_in_docker.joinpath(name + ".xml")
        export_blob_in_docker = export_dir_in_docker.joinpath(name + ".blob")

        client = docker.from_env()
        image = client.images.pull("openvino/ubuntu20_dev", tag="2022.1.0")
        docker_output = client.containers.run(
            image=image.tags[0],
            command=f'bash -c "mo -m {name}.onnx -n {name} -o {export_dir_in_docker} '
            + "--static_shape --reverse_input_channels --scale=255 --use_new_frontend "
            + "&& echo 'MYRIAD_ENABLE_MX_BOOT NO' | tee /tmp/myriad.conf >> /dev/null "
            + "&& /opt/intel/openvino/tools/compile_tool/compile_tool -m "
            + f"{export_xml_in_docker} -o {export_blob_in_docker} -ip U8 -VPU_NUMBER_OF_SHAVES {shaves} "
            + f'-VPU_NUMBER_OF_CMX_SLICES {shaves} -d MYRIAD -c /tmp/myriad.conf"',
            remove=True,
            volumes=[
                f"{output_dir}:/io",
            ],
            working_dir="/io",
        )
        print(docker_output.decode("utf8"))
    else:
        import subprocess as sp

        # OpenVINO export
        print("Starting to export OpenVINO...")
        OpenVINO_cmd = "mo --input_model %s --output_dir %s --data_type FP16 --scale=255 --reverse_input_channel" % (output_model, export_dir)
        try:
            sp.check_output(OpenVINO_cmd, shell=True)
            print("OpenVINO export success, saved as %s" % export_dir)
        except sp.CalledProcessError:
            print("")
            print("OpenVINO export failure!")
            print("By the way, you can try to export OpenVINO use:\n\t%s" % OpenVINO_cmd)

        # OAK Blob export
        print("Then you can try to export blob use:")
        blob_cmd = (
            "echo 'MYRIAD_ENABLE_MX_BOOT ON' | tee /tmp/myriad.conf"
            + "compile_tool -m %s -o %s -ip U8 -d MYRIAD -VPU_NUMBER_OF_SHAVES %s -VPU_NUMBER_OF_CMX_SLICES %s -c /tmp/myriad.conf"
            % (export_xml, export_blob, shaves, shaves)
        )
        print("%s" % blob_cmd)

        print("compile_tool maybe in the path: /opt/intel/openvino/tools/compile_tool/compile_tool, if you install openvino 2022.1 with apt")

    print("Blob file saved as:\n\t%s" % export_blob)
    print("Convert complete (%.2fs).\n" % (time.time() - t))


if __name__ == "__main__":
    args = parse_args()
    print(args)
    output_model = args.output_dir / (args.name + ".onnx")

    export(output_model=output_model, **vars(args))
    if args.blob:
        convert(output_model=output_model, **vars(args))

可以使用 Netron 查看模型结构:

▌转换

openvino 本地转换

onnx -> openvino

mo 是 openvino_dev 2022.1 中脚本,

安装命令为 pip install openvino-dev

mo --input_model yolo_nas_s.onnx --scale=255 --reverse_input_channel

openvino -> blob

compile_tool 是 OpenVINO Runtime 中脚本,

<path>/compile_tool -m yolo_nas_s.xml \
-ip U8 -d MYRIAD \
-VPU_NUMBER_OF_SHAVES 6 \
-VPU_NUMBER_OF_CMX_SLICES 6

在线转换

blobconvert 网页 http://blobconverter.luxonis.com/

  • 进入网页,按下图指示操作:
  • 修改参数,转换模型:
    1. 选择 onnx 模型
    2. 修改 optimizer_params 为 --data_type=FP16 --scale=255 --reverse_input_channel
    3. 修改 shaves 为 6
    4. 转换

blobconverter python 代码

blobconverter.from_onnx(
            "yolo_nas_s.onnx",	
            optimizer_params=[
                "--scale=255",
                "--reverse_input_channel",
            ],
            shaves=6,
        )

blobconvert cli

blobconverter --onnx yolo_nas_s.onnx -sh 6 -o . --optimizer-params "scale=255 --reverse_input_channel"

▌DepthAI 示例

正确解码需要可配置的网络相关参数:

  • setNumClasses – YOLO 检测类别的数量
  • setIouThreshold – iou 阈值
  • setConfidenceThreshold – 置信度阈值,低于该阈值的对象将被过滤掉
# coding=utf-8
import cv2
import depthai as dai
import numpy as np

numClasses = 80
model = dai.OpenVINO.Blob("yolo_nas_s.blob")
dim = next(iter(model.networkInputs.values())).dims
W, H = dim[:2]

output_name, output_tenser = next(iter(model.networkOutputs.items()))
if "yolov6" in output_name:
    numClasses = output_tenser.dims[2] - 5
else:
    numClasses = output_tenser.dims[2] // 3 - 5

labelMap = [
    # "class_1","class_2","..."
    "class_%s" % i
    for i in range(numClasses)
]

# Create pipeline
pipeline = dai.Pipeline()

# Define sources and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
detectionNetwork = pipeline.create(dai.node.YoloDetectionNetwork)
xoutRgb = pipeline.create(dai.node.XLinkOut)
xoutNN = pipeline.create(dai.node.XLinkOut)

xoutRgb.setStreamName("image")
xoutNN.setStreamName("nn")

# Properties
camRgb.setPreviewSize(W, H)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
camRgb.setInterleaved(False)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)

# Network specific settings
detectionNetwork.setBlob(model)
detectionNetwork.setConfidenceThreshold(0.5)

# Yolo specific parameters
detectionNetwork.setNumClasses(numClasses)
detectionNetwork.setCoordinateSize(4)
detectionNetwork.setAnchors([])
detectionNetwork.setAnchorMasks({})
detectionNetwork.setIouThreshold(0.5)

# Linking
camRgb.preview.link(detectionNetwork.input)
camRgb.preview.link(xoutRgb.input)
detectionNetwork.out.link(xoutNN.input)

# Connect to device and start pipeline
with dai.Device(pipeline) as device:
    # Output queues will be used to get the rgb frames and nn data from the outputs defined above
    imageQueue = device.getOutputQueue(name="image", maxSize=4, blocking=False)
    detectQueue = device.getOutputQueue(name="nn", maxSize=4, blocking=False)

    frame = None
    detections = []

    # nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/height
    def frameNorm(frame, bbox):
        normVals = np.full(len(bbox), frame.shape[0])
        normVals[::2] = frame.shape[1]
        return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)

    def drawText(frame, text, org, color=(255, 255, 255), thickness=1):
        cv2.putText(
            frame, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), thickness + 3, cv2.LINE_AA
        )
        cv2.putText(
            frame, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness, cv2.LINE_AA
        )

    def drawRect(frame, topLeft, bottomRight, color=(255, 255, 255), thickness=1):
        cv2.rectangle(frame, topLeft, bottomRight, (0, 0, 0), thickness + 3)
        cv2.rectangle(frame, topLeft, bottomRight, color, thickness)

    def displayFrame(name, frame):
        color = (128, 128, 128)
        for detection in detections:
            bbox = frameNorm(
                frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax)
            )
            drawText(
                frame=frame,
                text=labelMap[detection.label],
                org=(bbox[0] + 10, bbox[1] + 20),
            )
            drawText(
                frame=frame,
                text=f"{detection.confidence:.2%}",
                org=(bbox[0] + 10, bbox[1] + 35),
            )
            drawRect(
                frame=frame,
                topLeft=(bbox[0], bbox[1]),
                bottomRight=(bbox[2], bbox[3]),
                color=color,
            )
        # Show the frame
        cv2.imshow(name, frame)

    while True:
        imageQueueData = imageQueue.tryGet()
        detectQueueData = detectQueue.tryGet()

        if imageQueueData is not None:
            frame = imageQueueData.getCvFrame()

        if detectQueueData is not None:
            detections = detectQueueData.detections

        if frame is not None:
            displayFrame("rgb", frame)

        if cv2.waitKey(1) == ord("q"):
            break

Tags:

索引