

OAK-4P-New

产品手册

1. 产品简介

<u>OAK-4P-New</u>属于分体式 OAK 开发套件(<u>包装清单</u>),通过同轴线缆接入 4 个独立的相机模组。从而根据用户自定义需求,设置不同的安装基线距离和方位,适应不同的深度测量距离,满足不同的视野范围,提升测量和感知效果,有着极其广泛的应用场景。

1.1 套装 1 —— OAK-4P-New & B033501 1.2 套装 2 —— OAK-4P-New & B036801

套装1

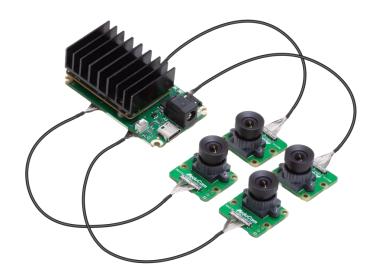
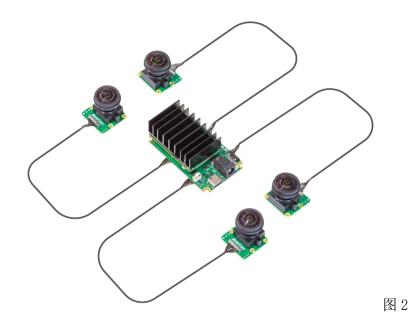



图 1

套裝1	
型号	OAK-4P-New B033501
分辨率	1280*800, 1MP
对焦	定焦
FoV	220° D/H/V
种类	彩色
快门	全局快门
最大帧率	120FPS
接口	USB 3.2 Gen 1

套装 2

套装 2		
型号	OAK-4P-New B036801	
分辨率	1920*1200, 2.3MP	
对焦	定焦	
FoV	180° D/H/V	
种类	彩色	
快门	全局快门	
最大帧率	60FPS	
接口	USB 3.2 Gen 1	

图 3 左上: B036801 右下: B033501

2. 套装包装清单

- O OAK 相机开发板*1
- O 20cm 同轴线*4
- O B036801 相机模组*4 /或/ B033501 相机模组*4
- O 1.5m长USB线*1

3. 应用场景

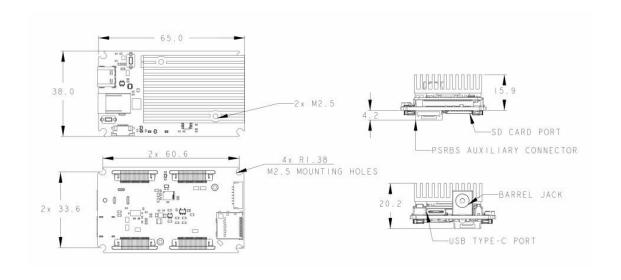
- O 机器人、无人机、全景 VSLAM
- O 智能驾驶
- O 编程教育
- O 工业智能化/自动化

4. 产品特点

- O **硬件同步**: 四相机与 9 轴 IMU 之间实现精准硬件同步,同步误差严格控制在 50 μ s 以内,确保相机与相机之间、相机与 IMU 之间保持高度一致的同步性能;支持在 ROS 中发布此话题。
- O 边缘 AI 推理与计算: 支持多种神经网络模型的边缘 AI 推理及运算,有效释放中央处理计算资源,显著提升末端决策效率,大幅降低响应延时。
- O **轻量化与耐用性**:单镜头重量仅约 8 克,采用同轴线连接设计,具备出色的抗干扰能力及防拉拽性能,特别适用于无人机等对轻量化和可靠性要求较高的应用场景。
- O 可自定义组合基线: 适用于不同距离的感知测量,支持连接4个相机模组

5. 规格参数

5.1 B033501 可选配的镜头(B036801 适配镜头待定)


SKU	产品图	描述	备注
LN008		适配 B033501 模组的更替,定焦, 140°,彩色,全局快门(需单独购买)	
LN009		适配 B033501 模组的更替,定焦, 180°,彩色,全局快门(需单独购买)	

SKU	产品图	描述	备注
LN013		适配 B033501 模组的更替,定焦, 89.5°,彩色,全局快门(需单独购 买)	

5.2 其他参数

参数	值
接口	USB 3.2 Gen 1
功耗	2W~5.5W
尺寸	65×38×20mm(PCBA 和散热片)
重量	约 41g(PCBA 和散热片),镜头模组单个约 8g
工作温度	−20 度~60 度
IMU	9 轴高性能 IMU

5.3尺寸图(以模型为准)

5.4 RVC2 性能

RVC2 简介

RVC2 是第二代应用于 OAK 3D AI 相机的 AI 芯片组,第二代的 OAK 设备均内置预搭载 RVC2 AI 芯片组。RVC2 主要由两个预封装组件组成:

- 1. 针对特定 SOC 进行微调的 DepthAl 功能;
- 2. 极低功耗的高性能 SoC 及其所有支持电路设计(包含高性能散热模组、PCB等)

RVC2 性能

- 4T 边缘算力(1.4T 可用于 AI)
- 支持多种 AI 模型,甚至内置自定义架构 AI 模型(需转换)
- 编码: 264, H.265, MIPEG 4K/30FPS, 1080P/60FPS
- 机器视觉:通过 ImageManip 节点进行畸变/去畸变、重构大小、裁剪、边缘检测、特征追踪、甚至运行自定义的 CV 函数;
- 目标检测与追踪:内嵌节点完成 2D 与 3D 追踪;
- 低功耗高算力的 AI 加速推理,兼容几乎所有主流神经网络边缘端加速;
- 板载边缘 AI: 实时的高性能 3D 检测、特征追踪、OCR、AI 识别、边缘检测、骨骼模型检测、语义分割等;
- 支持的语言和平台: Windows10、Ubuntu、树莓派、linux、macOS、Jetson、Python、C++、ROS、Android 等(需 depthai≥16.0);
- 支持的框架和神经网络: OpenVINO、Kaldi、Caffe、ONNX、MXNe、 TensorFlow、Pytorch、MobileNetv2SSD、Deeplabv3+、YOLO V3 及以上等;

RVC2 功耗

RVC2 芯片组自身最大功耗大约 4.5W, 主要由集成到 RVC2 的 SOC 和芯片自身占用;

6. 硬件下载

模型	下载链接
电路板模型 step 文件	<u>查看</u>
B033501 镜头模组 step 文件	<u>查看</u>
B036801 镜头模组 step 文件	待公布

7. 使用文档

文档	链接
相机校准教程	<u>查看</u>
中文使用教程	<u>查看</u>
Gitee 链接	<u>查看</u>
硬件同步说明	OAK-4P-New 如何实现四相机硬件同步? -
产品要求的 DepthAI 版本	推荐永远使用最新的 DepthAI 版本
Cam_Test.exe 硬件检测小程序	下载

*cam_test.exe 使用指南

- 1. 选择相机镜头(支持多个同时启动)和镜头属性(如 OAK-4P-New B033501 为 color, 彩色分辨率 800p; OAK-4P-New B03601 为 Color, 彩色分辨率 1200P)
- 2. 为所选的镜头设定相应分辨率、FPS 等参数
- 3. 检查所选的相机 IP 或 ID (相机 ID 为 18 位字符串,是每个相机的唯一标识符,USB 款仅支持识别 ID 连接)
- 4. 点击连接

注: 如发现本文档有任何错误,请将错误信息发送至 contact@oakchina. cn。